Microbiome Systems Biology

The development of next-generation sequencing that enables obtaining thousands to millions of reads per run at affordable costs for the scientific community, has revolutionized the field of medical microbiology. By assessing much deeper layers of microbial communities researchers were able to explore in detail both “who’s there?” and “what are they doing?” and develop models that describe the interplay of hosts, commensal microbes and diseases. Since tools and statistical methodologies are becoming faster and more specialized for complex microbial communities we expect that soon metagenomics will allow a full characterization of the community that will subsequently shift the focus from descriptive to mechanistic modeling of the host-microbiome interactome. The primary goals of our group are to: (i) create spatially and temporally resolved maps of the microbial world of the human, built and natural environment, (ii) develop a roadmap for discovering how microbes travel between different parts in the body and between various environments we come into contact every day, and (iii) harness this knowledge to explain the rise of diseases in urbanized parts of the world.