Functional analysis of the Candida albicans ECE1 Promoter.

Garbe E, Thielemann N, Hohner S, Kumar A, Vylkova S, Kurzai O, Martin R (2023) Functional analysis of the Candida albicans ECE1 Promoter. Microbiol Spectr 11(2), e0025323.

Abstract

The formation of hyphae is a key virulence attribute of Candida albicans as they are required for adhesion to and invasion of host cells, and ultimately deep-tissue dissemination. Hyphae also secrete the peptide toxin candidalysin, which is crucial for destruction of host cell membranes. The peptide is derived from a precursor protein encoded by the gene ECE1 which is strongly induced during hyphal growth. Previous studies revealed a very complex regulation of this gene involving several transcription factors. However, the promoter of the gene is still not characterized. Here, we present a functional analysis of the intergenic region upstream of the ECE1 gene. Rapid amplification of cDNA ends (RACE)-PCR was performed to identify the 5' untranslated region, which has a size of 49 bp regardless of the hyphae-inducing condition. By using green fluorescent protein (GFP) reporter constructs we further defined a minimal promoter length of 1,500 bp which was verified by RT-qPCR. Finally, we identified the TATA element required for the expression of the gene. It is located 106 to 109 bp upstream of the ECE1 start codon. Our results illustrate that despite a very short 5' UTR, a relatively long promoter is required to secure ECE1 transcription, indicating a complex regulatory machinery tightly controlling the expression of the gene. IMPORTANCE In recent years it was shown that secretion of the toxic peptide candidalysin from hyphae of the major human fungal pathogen Candida albicans contributes heavily to its virulence. The peptide is derived from a precursor protein which is encoded by the ECE1 gene whose transcription is known to be closely associated with formation of hyphae. Here, we used a GFP reporter system to determine the length of the ECE1 promoter and were able to show that it has a minimal size of 1,500 bp. Surprisingly, the gene has a very short 5' UTR of only 49 bp. In accordance with this, the TATA element required for transcription is located 106 to 109 bp upstream of the start codon. This indicates that ECE1 expression is controlled by a very long promoter allowing a complex network of transcription factors to contribute to the gene's regulation.

Leibniz-HKI-Autor*innen

Enrico Garbe
Oliver Kurzai
Slavena Vylkova

Identifier

doi: 10.1128/spectrum.00253-23

PMID: 36786567