
Dr. Mark S Gresnigt
Adaptive Pathogenitäts-Strategien · Leiter
Telefon: +49 3641 532-1305 Telefax: +49 3641 532-0810 E-Mail: mark.gresnigt@leibniz-hki.de
Wissenschaftlicher Werdegang
Seit 05/2020 |
Nachwuchsgruppenleiter, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans Knöll Institut, Adaptive Pathogenitäts-Strategien |
05/2018- 05/2020 |
Alexander von Humboldt Stiftung Postdoctoral Fellowship, Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans Knöll Institut, Abteilung Mikrobielle Pathogenitätsmechanismen, Jena |
03/2018-04/2018 | Deutsch-Sprachkurs, Dresden |
08/2015-03/2018 | Postdoktorand, Radboud-Universität, Medizinisches Zentrum. Abteilung Interne Medizin, Nijmegen. Projekt: The development of novel immunomodulatory strategies for disseminated fungal infections |
10/2010-05/2015 | Phd, Radboud-Universität Nijmegen, Medizinisches Zentrum, Abteilung Interne Medizin. Projekt: Pattern recognition and cytokine signalling pathways in the host defence against Aspergillus fumigatus |
02/2008-08/2010 | M.Sc. Medizinische Biologie, Radboud-Universität, Nijmegen, Niederlande |
07/2003-07/2007 | B.Sc. Biologie und Medizinische Forschung, Saxion-Universität der Angewandten Wissenschaften, Enschede, Niederlande |
Auszeichnungen · Ämter · wissenschaftliche Aktivitäten
2018 | Humboldt-Forschungsstipendium für Postdoktoranden |
2018 | Preis "Goldene Pipette", Labor für Experimentelle Interne Meizin, Radboud-Universität Nijmegen, Niederlande |
2016 | Preis für die drittbeste Doktorarbeit, Radboud-Institut für Molekulare Lebenswissenschaften (RIMLS) |
2015 | Preis für die beste Doktorarbeit, Niederländische Gesellschaft für Immunologie (NVVI) |
2015 | Nachwuchsförderpreis, Deutschsprachige Mykologische Gesellschaft (DMykG) |
2013 | ALLFUN Forschungspreis |
(2020) I want to break free - macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr Opin Microbiol 58, 15-23. Details PubMed
(2020) The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev [Epub ahead of print] Details PubMed
(2020) Human recombinant interleukin-38 suppresses inflammation in mouse models of local and systemic disease. Cytokine 137, 155334. Details PubMed
(2020) The gut, the bad and the harmless: Candida Albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 56, 7-15. Details PubMed
(2019) The itaconate pathway is a central regulatory node linking innate immune tolerance and trained immunity. Cell Metab 29(1), 211-220.e5. Details PubMed Open Access PDF
(2019) Keeping Candida commensal: How lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech 12(9), dmm039719. Details PubMed Open Access PDF
(2019) Frontline science: Endotoxin-induced immunotolerance is associated with loss of monocyte metabolic plasticity and reduction of oxidative burst. J Leukoc Biol 106(1), 11-25. Details PubMed Open Access PDF
(2019) A genome-wide functional genomics approach identifies susceptibility pathways to fungal bloodstream infection in humans. J Infect Dis 220(5), 862-872. Details PubMed Open Access PDF
(2019) A systems genomics approach identifies SIGLEC15 as a susceptibility factor in recurrent vulvovaginal candidiasis. Sci Transl Med 11(496), eaar3558. Details PubMed PDF
(2019) A three-dimensional immunocompetent intestine-on-chip model as in vitro platform for functional and microbial interaction studies. Biomaterials 220, 119396. Details PubMed
(2018) Adjunctive interferon-γ immunotherapy in a pediatric case of Aspergillus terreus infection. Eur J Clin Microbiol Infect Dis 37(10), 1915-1922. Details PubMed
(2018) Differential Kinetics of Aspergillus nidulans and Aspergillus fumigatus Phagocytosis. J Innate Immun 10(2), 145-160. Details PubMed
(2018) Genetic deficiency of NOD2 confers resistance to invasive aspergillosis. Nat Commun 9(1), 2636. Details PubMed Open Access PDF
(2018) The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun 9(1), 4260. Details PubMed Open Access
(2018) Microbiological and immunological characteristics of a lethal pulmonary Aspergillus niger infection in a non-neutropenic patient. Med Mycol Case Rep 21, 4-7. Details PubMed
(2017) Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis 17(12), e393-e402. Details PubMed
(2017) Cellular metabolism of myeloid cells in sepsis. J Leukoc Biol 101(1), 151-164. Details PubMed
(2017) The Multifaceted Role of T-Helper Responses in Host Defense against Aspergillus fumigatus. J Fungi (Basel) 3(4), Details PubMed
(2017) Rewiring monocyte glucose metabolism via C-type lectin signaling protects against disseminated candidiasis. PLoS Pathog 13(9), e1006632. Details PubMed
(2017) The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression. Front Immunol 8, 1777. Details PubMed
(2017) Adjuvant interferon-gamma immunotherapy in a patient with progressive cerebral Nocardia abscesses. Int J Infect Dis 59, 25-28. Details PubMed
(2017) An integrative genomics approach identifies novel pathways that influence candidaemia susceptibility. PLoS One 12(7), e0180824. Details PubMed
(2017) A guiding map for inflammation. Nat Immunol 18(8), 826-831. Details PubMed
(2017) Toll-like receptor 2 induced cytotoxic T-lymphocyte-associated protein 4 regulates Aspergillus-induced regulatory T-cells with pro-inflammatory characteristics. Sci Rep 7(1), 11500. Details PubMed
(2017) Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol 15(11), 661-674. Details PubMed
(2017) Personalized medicine in influenza: a bridge too far or the near future? Curr Opin Pulm Med 23(3), 237-240. Details PubMed
(2016) Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19(1), 79-90. Details PubMed
(2016) Aspergillus Cell Wall Chitin Induces Anti- and Proinflammatory Cytokines in Human PBMCs via the Fc-γ Receptor/Syk/PI3K Pathway. mBio 7(3), Details PubMed
(2016) Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 17(4), 406-413. Details PubMed
(2016) Reducing hypoxia and inflammation during invasive pulmonary aspergillosis by targeting the Interleukin-1 receptor. Sci Rep 6, 26490. Details PubMed
(2016) Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells. Eur J Immunol 46(11), 2574-2586. Details PubMed
(2016) Integrated transcriptomic and proteomic analyses of P. falciparum gametocytes: molecular insight into sex-specific processes and translational repression. Nucleic Acids Res 44(13), 6087-6101. Details PubMed
(2016) LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus. Cell Microbiol 18(9), 1208-1216. Details PubMed
(2015) Recognition of Coxiella burnetii by toll-like receptors and nucleotide-binding oligomerization domain-like receptors. J Infect Dis 211(6), 978-987. Details PubMed
(2015) Pattern recognition pathways leading to a Th2 cytokine bias in allergic bronchopulmonary aspergillosis patients. Clin Exp Allergy 45(2), 423-437. Details PubMed
(2015) Interferon-gamma Immunotherapy in a Patient With Refractory Disseminated Candidiasis. Pediatr Infect Dis J 34(12), 1391-1394. Details PubMed
(2015) An anti-inflammatory property of Candida albicans β-glucan: Induction of high levels of interleukin-1 receptor antagonist via a Dectin-1/CR3 independent mechanism. Cytokine 71(2), 215-222. Details PubMed
(2015) IL1B and DEFB1 Polymorphisms Increase Susceptibility to Invasive Mold Infection After Solid-Organ Transplantation. J Infect Dis 211(10), 1646-1657. Details PubMed
(2014) IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci U S A 111(9), 3526-3531. Details PubMed
(2014) Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis 14, 166. Details PubMed
(2014) A polysaccharide virulence factor from Aspergillus fumigatus elicits anti-inflammatory effects through induction of Interleukin-1 receptor antagonist. PLoS Pathog 10(3), e1003936. Details PubMed
(2014) The role of interleukin-1 family members in the host defence against Aspergillus fumigatus. Mycopathologia 178(5-6), 395-401. Details PubMed
(2014) Protective host defense against disseminated candidiasis is impaired in mice expressing human interleukin-37. Front Microbiol 5, 762. Details PubMed
(2014) The dipeptidyl peptidase-4 inhibitor vildagliptin does not affect ex vivo cytokine response and lymphocyte function in patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 103(3), 395-401. Details PubMed
(2013) Aspergillus fumigatus-induced IL-22 is not restricted to a specific Th cell subset and is dependent on complement receptor 3. J Immunol 190(11), 5629-5639. Details PubMed
(2013) The IL-36 receptor pathway regulates Aspergillus fumigatus-induced Th1 and Th17 responses. Eur J Immunol 43(2), 416-426. Details PubMed
(2013) Biology of IL-36 cytokines and their role in disease. Semin Immunol 25(6), 458-465. Details PubMed
(2013) Corticosteroids block autophagy protein recruitment in Aspergillus fumigatus phagosomes via targeting dectin-1/Syk kinase signaling. J Immunol 191(3), 1287-1299. Details PubMed
(2013) Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4, 1342. Details PubMed
(2012) Neutrophil-mediated inhibition of proinflammatory cytokine responses. J Immunol 189(10), 4806-4815. Details PubMed
(2012) Pattern recognition receptors and their role in invasive aspergillosis. Ann N Y Acad Sci 1273, 60-67. Details PubMed
(2012) Low interleukin-17A production in response to fungal pathogens in patients with chronic granulomatous disease. J Interferon Cytokine Res 32(4), 159-168. Details PubMed
(2009) Th17 responses and host defense against microorganisms: an overview. BMB Rep 42(12), 776-787. Details PubMed