
Dr. Ronny Martin
Fungal Septomics Jetzt: Julius-Maximilians-Universität Würzburg
(2020) Ahr1 and Tup1 contribute to the transcriptional control of virulence-associated genes in Candida albicans. mBio 11(2), e00206-20. Details PubMed Open Access PDF
(2019) Candida auris in germany and previous exposure to foreign healthcare. Emerg Infect Dis 25(9), 1763-1765. Details PubMed Open Access PDF
(2017) CO2 sensing in fungi: at the heart of metabolic signaling. Curr Genet 63(6), 965-972. Details PubMed
(2017) Lipid signaling via Pkh1/2 regulates fungal CO2 sensing through the kinase Sch9. mBio 8(1), e02211-16. Details PubMed
(2017) A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol 103(4), 595-617. Details PubMed
(2016) Candida albicans infection leads to barrier breakdown and a MAPK/NF-κB mediated stress response in the intestinal epithelial cell line C2BBe1. Cellular Microbiology 18(7), 889-904. Details PubMed
(2016) Candida albicans induces metabolic reprogramming in human NK cells and responds to perforin with a Zinc depletion response. Front Microbiol 7, 750. Details PubMed Open Access
(2015) Neutrophil activation by Candida glabrata but not Candida albicans promotes fungal uptake by monocytes. Cell Microbiol 17(9), 1259-1276. Details PubMed
(2015) A second stimulus required for enhanced antifungal activity of human neutrophils in blood is provided by anaphylatoxin C5a. The Journal of Immunology 194(3), 1199-1210. Details PubMed
(2015) Candida albicans bloodstream isolates in a German university hospital are genetically heterogenous and susceptible to commonly used antifungals. Int J Med Microbiol 305(7), 742-747. Details PubMed
(2015) Defining the transcriptomic landscape of Candida glabrata by RNA-Seq. Nucleic Acids Res 43(3), 1392-1406. Details PubMed Open Access
(2014) A virtual infection model quantifies innate effector mechanisms and Candida albicans immune escape in human blood. PLOS Comput Biol 10(2), e1003479, */⁺authors contributed equally. Details PubMed Open Access
(2014) Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. PLOS Genet 10(12), e1004824. Details PubMed Open Access
(2013) A core filamentation response network in Candida albicans is restricted to eight genes. PLOS One 8(3), e58613. Details PubMed Open Access
(2013) Global transcriptome sequencing identifies chlamydospore specific markers in Candida albicans and Candida dubliniensis. PLOS One 8(4), e61940. Details PubMed
(2011) The Candida albicans-specific gene EED1 encodes a key regulator of hyphal extension. PLOS One 6(4), e18394. Details PubMed
(2011) Host-pathogen interactions and virulence-associated genes during Candida albicans oral infections. Int J Med Microbiol 301(5), 417-422. (Review) Details PubMed
(2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459(7247), 657-662. Details PubMed
(2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9(5), 688-700. (Review) Details PubMed
(2008) From attachment to invasion: infection associated genes of Candida albicans. Nihon Ishinkin Gakkai Zasshi 49(4), 245-251. Details PubMed