Bakterielle Signalgeber im Boden

Streptomyces-Bakterien produzieren eine Gruppe von Signalmolekülen, die eine Vielzahl von Prozessen anstoßen

Fluoreszenzmikroskopische Bild von Aspergillus nidulans
Dieser Aspergillus nidulans-Reporterstamm produziert grün fluoreszierendes Protein (GFP), wenn ein bestimmtes Gencluster aktiviert wird. Das wiederum passiert, wenn ein Arginoketid zugegeben wird. Quelle: Maira Rosin/Leibniz-HKI

Bakterien der Gattung Streptomyces produzieren chemische Stoffe, als Arginoketide bezeichnet, auf die viele andere Mikroorganismen reagieren: Bakterien bilden daraufhin Biofilme, Algen schließen sich zu Aggregaten zusammen und Pilze bilden gleichfalls Signal-Stoffe, die sie sonst nicht produzieren und die auf weitere Organismen wirken. Das zeigt eine Studie von Forschenden des Leibniz-Instituts für Naturstoff-Forschung und Infektionsbiologie (Leibniz-HKI), für die sie verschiedene Streptomyces-Arten, die von ihnen gebildeten Arginoketide und deren Einfluss auf andere Boden-Mikroorganismen erforschten.

Auch wenn Mikroorganismen nicht sprechen können, kommunizieren sie miteinander. Dafür nutzen sie chemische Stoffe, die von anderen Mikroorganismen als Signale verstanden werden. „Das sind relativ kleine organische Verbindungen, sogenannte Naturstoffe“, erklärt Axel Brakhage, Studienleiter sowie Direktor des Leibniz-HKI und Professor an der Friedrich-Schiller-Universität Jena. „Mikroorganismen produzieren eine Vielzahl solcher Stoffe und wir beginnen gerade erst, diese Sprache zu verstehen.“

Bakterien der Gattung Streptomyces sind für die Kommunikation im Boden offenbar besonders wichtig. Sie kommen weltweit vor und produzieren viele verschiedene Arginoketide – das haben Forschende des Leibniz-HKI in einer Studie erforscht, deren Ergebnisse kürzlich in Nature Microbiology veröffentlicht wurden. Arginoketide sind eine Untergruppe der Polyketide – eine Gruppe von Naturstoffen, die von verschiedenen Organismen produziert werden. Viele Polyketide sind medizinisch interessant, weil sie zum Beispiel antibiotisch sind oder gegen Krebszellen wirken.

Farbige Punkte auf Weltkarte, rot: Azalomycin F, auf allen Kontinenten; gelb: Monazomycin, in Japan und Nordost-USA; dunkelblau: Desertomycin, weltweit; grün: Linearmycin A, Europa, Nordwest-Kanada; hellblau: Europa, China, Japan
Auf Literaturrecherche und Genomanalysen basierende Weltkarte mit Standorten, an denen Streptomyces-Bakterien isoliert wurden, die Arginoketide produzieren. Das deutet auf eine nahezu weltweite Verbreitung von Arginoketid-Produzenten hin. Quelle: Mario Krespach/publiziert in Nature Microbiology

Die vom Team des Leibniz-HKI identifizierte Gruppe der Arginoketide stößt verschiedene Prozesse im Boden an. „In vorherigen Studien haben wir bereits gesehen, dass der Pilz Aspergillus nidulans manche Stoffe nur in Anwesenheit von Streptomyzeten produziert“, sagt Maria Stroe, eine der beiden Erstautor*innen der Studie. Als verantwortlich dafür wurde das Arginoketid Azalomycin F identifiziert.

Die Forschenden untersuchten deshalb für die aktuelle Studie, ob Streptomyzeten noch weitere Verbindungen produzieren, die als Signalstoffe aktiv sind. „Durch eine Literatursuche haben wir eine Vielzahl von Beispielen gefunden, bei denen Streptomyces-Arten weltweit strukturell ähnliche Verbindungen produzieren oder jedenfalls Biosynthese-Gencluster für entsprechende Arginoketide besitzen“, erklärt Mario Krespach, Erstautor der Studie.

Einige dieser Verbindungen isolierten die Forschenden aus Streptomyces-Stämmen aus Bodenproben und testeten sie erfolgreich am Schimmelpilz Aspergillus nidulans – sie lösten bei dem Pilz ebenfalls die Produktion chemischer Stoffe aus, die er sonst nicht produziert. „Wir haben deswegen vermutet, dass wir möglicherweise einen generellen Mechanismus der mikrobiellen Kommunikation gefunden haben“, so Lukas Zehner, ebenfalls ein Autor der Studie.

Und tatsächlich fand das Team in Bodenproben eine Vielzahl von Pilzen, die in Gegenwart von Streptomyces iranensis Stoffe bildeten, die sie sonst nicht bilden. Schalteten die Forschenden die entsprechenden Biosynthesegene für Arginoketide aus, blieb auch der Effekt aus.

Links Lupen-Ausschnitt aus Mikrobiom, Mitte Arginoketide, Pfeile zu andere Mikroorganismen plus Auswirkungen; rechts Mikroorganismen und Moleküle
Arginoketide haben unterschiedliche Effekte auf verschiedene Mikroorganismen. Die bisherigen Forschungsergebnisse lassen vermuten, dass Arkinoketide zur Strukturierung mikrobieller Gemeinschaften beitragen, indem sie Mikroorganismen in ihrem Wachstum beeinflussen oder Veränderungen in Morphologie und Stoffwechsel hervorrufen. Quelle: Mario Krespach/publiziert in Nature Microbiology

Frühere Studien zeigten zahlreiche Aktivitäten von Arginoketiden – sie bringen beispielsweise einen Pilz und eine Grünalge dazu, eine Symbiose einzugehen, ein anderer Pilz verändert seine Gestalt und ein Bakterium bildet in Reaktion auf die Substanzen einen Biofilm.

„Wir versuchen nun zu verstehen, welche Auswirkungen die Produktion von Arginoketiden selbst und auch die dann in einer zweiten Welle produzierten Substanzen aus Pilzen auf die Zusammensetzung von mikrobiellen Gemeinschaften, den Mikrobiomen, haben“, so Studienleiter Brakhage. Einer der durch Aspergillus nidulans produzierten Stoffe hemmt beispielsweise einen pflanzenpathogenen Pilz. Die Wirkungen der Arginoketide auf Algen und Pilze könnten auch zur Evolution von Flechten und Vielzelligkeit beigetragen haben.

„Dieses Zusammenspiel aufzuklären hilft uns unter anderem zu verstehen, wie mikrobielle Gemeinschaften strukturiert werden und wie sie Pflanzenkrankheiten verhindern helfen. Außerdem entdecken wir ganz neue Substanzen, wenn wir das Zusammenleben von Mikroorganismen erforschen, anstatt uns nur isolierte Organismen anzuschauen“, erklärt Brakhage.

Die Studie wurde durch die Deutsche Forschungsgemeinschaft im Rahmen des Exzellenzclusters Balance of the Microverse und der Sonderforschungsbereiche FungiNet (Transregio) und ChemBioSys, sowie durch die Leibniz-Gemeinschaft im Rahmen des Leibniz-Wettbewerbs unterstützt.

Originalpublikation

Krespach MKC, Stroe MC, Netzker T, Rosin M, Zehner LM, Komor AJ, Beilmann JM, Krüger T, Scherlach K, Kniemeyer O, Schroeckh V, Hertweck C, Brakhage AA (2023) Streptomyces polyketides mediate bacteria–fungi interactions across soil environments. Nature Microbiology, doi: 10.1038/s41564-023-01382-2

Mitarbeiter*innen

Johanna Beilmann
Axel A. Brakhage
Christian Hertweck
Olaf Kniemeyer
Anna Komor
Mario Krespach
Thomas Krüger
Tina Netzker
Maira Rosin
Kirstin Scherlach
Volker Schroeckh
Maria Stroe
Lukas Zehner

Pressekontakt

Friederike Gawlik
Charlotte Fuchs

Akkreditierung

Sie möchten aktuelle Pressemitteilungen des Leibniz-HKI regelmäßig beziehen?

Bitte tragen Sie Ihre E-Mail-Adresse ein und klicken Sie auf Abonnieren. Sie erhalten die Pressemitteilungen dann künftig per E-Mail. Den Bezug können Sie jederzeit wieder beenden.

Bitte rechnen Sie 6 plus 3.