Ein Enzym macht Pilze „magisch“

Neue Studie gibt Aufschluss über Struktur und Evolution eines Enzyms in psychoaktiven Pilzen

| von Friederike Gawlik

Kubanischer Kahlkopf (Psilocybe cubensis)
Kubanischer Kahlkopf (Psilocybe cubensis). Quelle: Felix Blei/Leibniz-HKI

Ein internationales Forschungsteam hat die Biosynthese von Psilocybin untersucht, dem Hauptinhaltsstoff halluzinogener Pilze. Dabei konnten neue Erkenntnisse über die Struktur und den Reaktionsmechanismus des Enzyms PsiM gewonnen werden. Es spielt eine Schlüsselrolle bei der Herstellung von Psilocybin. Die Ergebnisse der Studie wurden in der Zeitschrift Nature Communications veröffentlicht.

Die psychoaktive Substanz Psilocybin ist das wichtigste Naturprodukt von sogenannten „Zauberpilzen“ der Gattung Psilocybe, was diese Pilze zu einer beliebten Droge macht. Doch auch in der Medizin ist Psilocybin in den letzten Jahren für eine Reihe von psychischen Erkrankungen zunehmend interessant geworden. So zeigten sich vielversprechende Ergebnisse bei der Behandlung von Depressionen, Suchterkrankungen und Angstzuständen. Daher befindet sich Psilocybin als pharmazeutischer Wirkstoff bereits in der fortgeschrittenen klinischen Testung.

Psilocybin wird von den Pilzen in komplexen biochemischen Prozessen aus der Aminosäure L-Tryptophan gebildet. Dabei spielt das Enzym PsiM, eine Methyltransferase, eine wichtige Rolle. Es katalysiert hintereinander zwei Methylierungsreaktionen, die letzten beiden Schritte der Psilocybin-Herstellung: „Methyltransferreaktionen gibt es in der Natur zwar viele“, sagt Dirk Hoffmeister. Er ist Professor für Pharmazeutische Mikrobiologie an der Friedrich-Schiller-Universität Jena und leitet eine assoziierte Forschungsgruppe am Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie – Hans-Knöll-Institut (Leibniz-HKI). „Wir haben uns hier aber gefragt, wie die Psilocybinproduktion genau vollendet wird.“

Die Biosynthese von Psilocybin beginnt mit L-Tryptophan und entsteht durch zwei Methylierungsschritte, die durch PsiM katalysiert werden.
Die Biosynthese von Psilocybin beginnt mit L-Tryptophan und entsteht durch zwei Methylierungsschritte, die durch PsiM katalysiert werden. Quelle: Dirk Hoffmeister/Leibniz-HKI

Zwei Enzyme, ein Ursprung

Dazu untersuchte ein Team der Medizinischen Universität Innsbruck um den Kristallographen Bernhard Rupp zusammen mit den Jenaer Forschern das Enzym PsiM sowohl biochemisch als auch mit Hilfe der Röntgenkristallstrukturanalyse. Diese Methode erlaubt eine Darstellung von Proteinen bis auf die atomare Ebene, wobei mehrere Stufen der Reaktion in ultrahoher Auflösung dargestellt werden konnten.

Bei der Untersuchung der Proteinstruktur zeigten sich erstaunliche Ähnlichkeiten im Aufbau zwischen dem Pilzenzym PsiM und Enzymen, die normalerweise für die Modifikation von RNA verantwortlich sind. Obwohl es auch Unterschiede gibt, deutet die große strukturelle Ähnlichkeit darauf hin, dass sich das Pilzenzym aus einer einfach methylierenden RNA-Methyltransferase entwickelt hat. Demnach besaß es früher nur die Fähigkeit, eine einzige Methylgruppe an das Zielmolekül zu heften. „Die Psilocybin-Vorstufe Norbaeocystin, die von PsiM umgesetzt wird, imitiert strukturell einen Teil der RNA, wird aber zweifach methyliert“, so Hoffmeister.

Kleiner Tausch mit großer Wirkung

In weiteren Untersuchungen konnten die Forschenden auch einen entscheidenden Aminosäureaustausch identifizieren, der PsiM während der Evolution die Fähigkeit zur zweifachen Methylierung verlieh. Bei diesem Prozess geschieht der letzte Schritt der gesamten Reaktionskette, der für eine potenzielle biotechnologische Produktion des Wirkstoffs wichtig ist: die Umwandlung des einfach methylierten Zwischenproduktes Baeocystin zum zweifach methylierten Psilocybin.

Ein klares Ende

Die Forschenden fragten sich anschließend, ob PsiM auch Psilocybin durch Anknüpfung einer dritten Methylgruppe zum Aeruginascin umwandeln könne. Aeruginascin ist ein Analogon von Psilocybin, das natürlicherweise in manchen Pilzarten vorkommt. „Die Frage ist nur, wo kommt es her?“, fragt Hoffmeister. In der Wissenschaft herrschte bis dato Uneinigkeit darüber, ob die Verbindung ein Stoffwechselprodukt des Psilocybin-Biosyntheseweges sei und durch PsiM aus Psilocybin hervorgehen könne. Die Studie liefert dazu nun ein klares Ergebnis: „Das geschieht eindeutig nicht“, sagt Hoffmeister. „PsiM ist nicht in der Lage, Psilocybin zu Aeruginascin umzuwandeln.“ Somit kann PsiM zur biosynthetischen Produktion dieses Analogons ausgeschlossen werden. Für die Herstellung von Psilocybin in Mikroorganismen könnte das Enzym künftig aber relevant sein: „Insgesamt können unsere Ergebnisse dabei helfen, neue Varianten von Psilocybin mit verbesserten therapeutischen Eigenschaften zu entwickeln und biotechnologisch herzustellen,“ so Hoffmeister.

Beteiligte Institutionen

Medizinische Universität Innsbruck, Österreich
Colorado School of Mines, Golden, CO, USA
Friedrich-Schiller-Universität Jena, Deutschland
Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie, Jena, Deutschland
k.-k. Hofkristallamt, San Diego, CA, USA

Förderung

Deutsche Forschungsgemeinschaft (DFG)
Österreichischer Wissenschaftsfonds (FWF)
Fulbright-Austrian Marshall Plan Foundation Award

Originalpublikation

Hudspeth J, Rogge K, Dörner S, Müll M, Hoffmeister D, Rupp B, Werten S (2024) Methyl transfer in psilocybin biosynthesis. Nature Communications, https://doi.org/10.1038/s41467-024-46997-z

Mitarbeiter*innen

Sebastian Dörner
Dirk Hoffmeister
Maximilian Müll
Kai Rogge

Pressekontakt

Friederike Gawlik
Charlotte Fuchs

Akkreditierung

Sie möchten aktuelle Pressemitteilungen des Leibniz-HKI regelmäßig beziehen?

Bitte tragen Sie Ihre E-Mail-Adresse ein und klicken Sie auf Abonnieren. Sie erhalten die Pressemitteilungen dann künftig per E-Mail. Den Bezug können Sie jederzeit wieder beenden.

Bitte rechnen Sie 9 plus 6.