Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles.

Schlegel M, Münsterkötter M, Güldener U, Bruggmann R, Duo A, Hainaut M, Henrissat B, Sieber CM, Hoffmeister D, Grünig CR (2016) Globally distributed root endophyte Phialocephala subalpina links pathogenic and saprophytic lifestyles. BMC Genomics 17, 1015.

Abstract

Whereas an increasing number of pathogenic and mutualistic ascomycetous species were sequenced in the past decade, species showing a seemingly neutral association such as root endophytes received less attention. In the present study, the genome of Phialocephala subalpina, the most frequent species of the Phialocephala fortinii s.l. – Acephala applanata species complex, was sequenced for insight in the genome structure and gene inventory of these wide-spread root endophytes.

Results

The genome of P. subalpina was sequenced using Roche/454 GS FLX technology and a whole genome shotgun strategy. The assembly resulted in 205 scaffolds and a genome size of 69.7 Mb. The expanded genome size in P. subalpina was not due to the proliferation of transposable elements or other repeats, as is the case with other ascomycetous genomes. Instead, P. subalpina revealed an expanded gene inventory that includes 20,173 gene models. Comparative genome analysis of P. subalpina with 13 ascomycetes shows that P. subalpina uses a versatile gene inventory including genes specific for pathogens and saprophytes. Moreover, the gene inventory for carbohydrate active enzymes (CAZymes) was expanded including genes involved in degradation of biopolymers, such as pectin, hemicellulose, cellulose and lignin.

Leibniz-HKI-Autor*innen

Dirk Hoffmeister

Identifier

doi: 10.1186/s12864-016-3369-8

PMID: 27938347