Transkingdom mechanism of MAMP generation by chitotriosidase feeds oligomeric chitin from fungal pathogens and allergens into TLR2-mediated innate immune sensing.

Chang TH, Cardona Gloria Y, Hellmann MJ, Richardo T, Greve CL, Le Roy D, Roger T, Bork F, Bugl S, Jakob J, Sonnberger J, Kasper L, Hube B, Pusch S, Gow NAR, Sørlie M, Tøndervik A, Moerschbacher BM, Weber ANR (2025) Transkingdom mechanism of MAMP generation by chitotriosidase feeds oligomeric chitin from fungal pathogens and allergens into TLR2-mediated innate immune sensing. Front Immunol 16, 1497174.

Abstract

Chitin is a highly abundant polysaccharide in nature and is linked to immune recognition of fungal infections and asthma in humans. Ubiquitous in fungi and insects, chitin is absent inmammals and plants and, thus, represents a microbeassociatedmolecular pattern (MAMP). However, highly polymeric chitin is insoluble, which potentially hampers recognition by host immune sensors. In plants, secreted chitinases degrade polymeric chitin into diffusible oligomers, which are "fed to" innate immune receptors and co-receptors. In human and murine immune cells, a similar enzymatic activity was shown for human chitotriosidase (CHIT1), and oligomeric chitin is sensed via an innate immune receptor, Toll-like receptor (TLR) 2. However, a complete system of generating MAMPs from chitin and feeding them into a specific receptor/co-receptor-aided sensing mechanism has remained unknown in mammals.

Leibniz-HKI-Autor*innen

Bernhard Hube
Lydia Kasper
Johannes Sonnberger

Identifier

doi: 10.3389/fimmu.2025.1497174

PMID: 40098951