Damage to the host

The mechanism by which Candida albicans damages host cells has been considered to be multi-factorial, and presumed to rely on a combination of adhesion, invasion, hyphal extension, turgor pressure and the secretion of hydrolytic enzymes. Although toxin production by C. albicans has long been postulated and the culture supernatants of C. albicans hyphae have been shown to exhibit haemolytic activity, the mechanism underlying C. albicans’ ability to lyse host cells has remained elusive. It is clear that hyphae are crucial for adhesion, invasion and damage. Thus, host cell damage is caused by hyphae and/or a hyphal associated factor. However, the exact molecular mechanisms by which C. albicans destroys these host cells has remained enigmatic.

We have identified a peptide toxin, secreted by C. albicans, which has remarkable similarities with melittin – the major component of bee venom. By deleting the encoding gene and in vitro synthesis of the fragment, we have shown that this peptide is, in itself, essential and sufficient for the lysis of host cells. In collaboration with Dr Julian Naglik, Kings College London/UK and other cooperation partners, we elucidated intracellular processing of the Ece1 polyprotein into different peptides including the secreted, damage-mediating candidalysin. Ongoing work and cooperations, e.g. with Dr Thomas Gutsmann, Forschungszentrum Borstel/Germany, now examine the exact mechanism by which this potent C. albicans cytolysin disrupts host cell integrity and investigate the role of non-candidalysin Ece1 peptides (NCEPs, PI-II, IV-VIII) for the biology of C. albicans and its interaction with the host.

Staff

Stefanie Allert
Rita Müller

Publications

Drummond RA, Swamydas M, Oikonomou V, Zhai B, Dambuza IM, Schaefer BC, Bohrer AC, Mayer-Barber KD, Lira SA, Iwakura Y, Filler SG, Brown GD, Hube B, Naglik JR, Hohl TM, Lionakis MS (2019) CARD9+ microglia promote antifungal immunity via IL-1β- and CXCL1-mediated neutrophil recruitment. Nat Immunol 20(5), 559-570.
Graf K, Last A, Gratz R, Allert S, Linde S, Westermann M, Gröger M, Mosig AS, Gresnigt MS, Hube B (2019) Keeping Candida commensal: How lactobacilli antagonize pathogenicity of Candida albicans in an in vitro gut model. Dis Model Mech 12(9), dmm039719.
Ho J, Yang X, Nikou SA, Kichik N, Donkin A, Ponde NO, Richardson JP, Gratacap RL, Archambault LS, Zwirner CP, Murciano C, Henley-Smith R, Thavaraj S, Tynan CJ, Gaffen SL, Hube B, Wheeler RT, Moyes DL, Naglik JR (2019) Candidalysin activates innate epithelial immune responses via epidermal growth factor receptor. Nat Commun 10(1), 2297.
Naglik JR, Gaffen SL, Hube B (2019) Candidalysin: Discovery and function in Candida albicans infections. Curr Opin Microbiol 52, 100-109. (Review)
Pekmezovic M, Mogavero S, Naglik JR, Hube B (2019) Host-pathogen interactions during female genital tract infections. Trends Microbiol 27(12), 982-996. (Review)
Swidergall M, Khalaji M, Solis N, Moyes D, Drummond R, Hube B, Lionakis M, Murdoch C, Filler S, Naglik J (2019) Candidalysin is required for neutrophil recruitment and virulence during systemic Candida albicans infection. J Infect Dis 220(9), 1477-1488.
Westman J, Hube B, Fairn GD (2019) Integrity under stress: Host membrane remodelling and damage by fungal pathogens. Cell Microbiol 21(4), e13016.
Allert S*, Förster TM*, Svensson C-M, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge MT, Jacobsen ID, Naglik JR, Kasper L, Mogavero S, Hube B; *authors contributed equally (2018) Candida albicans-induced epithelial damage mediates translocation through intestinal barriers. mBio 9(3), e00915.
Kasper L, König A, Koenig PA, Gresnigt MS, Westman J, Drummond RA, Lionakis MS, Groß O, Ruland J, Naglik JR, Hube B (2018) The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat Commun 9(1), 4260.
Lazić J, Ajdačić V, Vojnovic S, Zlatović M, Pekmezovic M, Mogavero S, Opsenica I, Nikodinovic-Runic J (2018) Bis-guanylhydrazones as efficient anti-Candida compounds through DNA interaction. Appl Microbiol Biotechnol 102(4), 1889-1901.

Funding