
Dr. Sascha Brunke
Microbial Pathogenicity Mechanisms · Deputy head of Department Microbial Pathogenicity Mechanisms
Phone: +49 3641 532-1222 Fax: +49 3641 532-0810 Email: sascha.brunke@leibniz-hki.de
(2019) Human anti-fungal Th17 immunity and pathology rely on cross-reactivity against Candida albicans. Cell 176(6), 1340-1355.e15. Details PubMed
(2019) Disruption of membrane integrity by the bacteria-derived antifungal jagaricin. Antimicrob Agents Chemother 63(9), pii: e00707-19. Details PubMed
(2019) RNAi as a Tool to Study Virulence in the Pathogenic Yeast Candida glabrata. Front Microbiol 10, 1679. Details PubMed
(2019) Antivirulence and avirulence genes in human pathogenic fungi. Virulence 10(1), 935-947. Details PubMed
(2018) The needle and the damage done. Nat Microbiol 3(8), 860-861. (Review) Details PubMed
(2018) Metals in fungal virulence. FEMS Microbiol Rev 42(1), (Review) Details PubMed Open Access
(2018) Power Spectrum Consistency among Systems and Transducers. Ultrasound Med Biol [Accepted] Details PubMed
(2018) Comparative study on alternative splicing in human fungal pathogens suggests its involvement during host invasion. Front Microbiol 9, 2313. Details PubMed Open Access
(2018) Two's company: studying interspecies relationships with dual RNA-seq. Curr Opin Microbiol 42, 7-12. (Review) Details PubMed Open Access
(2017) The fungal pathogen Candida glabrata does not depend on surface ferric reductases for iron acquisition. Front Microbiol 8, 1055. Details PubMed Open Access
(2017) Encapsulation of antifungals in micelles protects Candida albicans during gall-bladder infection. Front Microbiol 8, 117. Details PubMed Open Access
(2017) The Snf1-activating kinase Sak1 is a key regulator of metabolic adaptation and in vivo fitness of Candida albicans. Mol Microbiol 104(6), 989-1007. Details PubMed
(2017) Candida albicans Hap43 domains are required under iron starvation but not excess. Front Microbiol 8, 2388. Details PubMed Open Access
(2016) In vivo transcriptional profiling of human pathogenic fungi during infection: reflecting the real life? PLOS Pathog 12(4), e1005471. (Review) Details PubMed Open Access
(2016) Candida species rewired hyphae developmental programs for chlamydospore formation. Front Microbiol 7, 1697. Details PubMed Open Access
(2016) Virulence factors in fungal pathogens of man. Curr Opin Microbiol 32, 89-95. (Review) Details PubMed Open Access
(2016) A novel hybrid iron regulation network combines features from pathogenic and non-pathogenic yeasts. mBio 7(5), e01782-16. Details PubMed Open Access
(2016) Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions. Sci Rep 6, 36055. Details PubMed Open Access PDF
(2016) Candida albicans induces metabolic reprogramming in human NK cells and responds to perforin with a Zinc depletion response. Front Microbiol 7, 750. Details PubMed Open Access
(2016) Widespread inter- and intra-Ddmain horizontal gene transfer of d-amino acid metabolism enzymes in eukaryotes. Front Microbiol 7, 2001. Details PubMed Open Access
(2015) Csr1/Zap1 maintains zinc homeostasis and influences virulence in Candida dubliniensis but is not coupled to morphogenesis. Eukaryot Cell 14(7), 661-670. Details PubMed Open Access PDF
(2015) Of mice, flies - and men? Comparing fungal infection models for large-scale screening efforts. Dis Model Mech (8), 473-486. Details PubMed Open Access PDF
(2015) Metal ions in host microbe interactions: The microbe perspective. In: Nriagu JO, Skaar EP (eds.) Trace Metals and Infectious Diseases. The MIT Press. Strüngmann Forum Reports. ISBN: 9780262029193. Details
(2015) Antifungal activity of clotrimazole against Candida albicans depends on carbon sources, growth phase, and morphology. J Med Microbiol 64, 714-723. Details PubMed
(2014) Adaptive prediction as a strategy in microbial infections. PLOS Pathog 10(10), e1004356. Details PubMed Open Access
(2014) One small step for a yeast - Microevolution within macrophages renders Candida glabrata hypervirulent due to a single point mutation. PLOS Pathog 10(10), e1004478. Details PubMed Open Access
(2014) Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot Cell 13(6), 758-765. Details PubMed
(2014) Metabolism in Fungal Pathogenesis. Cold Spring Harb Perspect Med 4(12), Details PubMed
(2014) Fine-scale chromosomal changes in fungal fitness. J Curr Fungal Infect Rep Vol. 8(2), 171-178. (Review) Details
(2014) Identification of Candida glabrata genes involved in pH modulation and modification of the phagosomal environment in macrophages. PLOS One 9(5), e96015. Details PubMed Open Access
(2014) Regulatory networks controlling nitrogen sensing and uptake in Candida albicans. PLOS One 9(3), e92734. Details PubMed Open Access
(2014) Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLOS Pathog 10(6), e1004211. Details PubMed Open Access
(2014) Immune evasion, stress resistance, and efficient nutrient acquisition are crucial for intracellular survival of Candida glabrata within macrophages. Eukaryot Cell 13(1), 170-183. Details PubMed
(2014) Microevolution of Candida albicans in macrophages restores filamentation in a nonfilamentous mutant. PLOS Genet 10(12), e1004824. Details PubMed Open Access
(2013) Two unlike cousins: Candida albicans and C. glabrata infection strategies. Cell Microbiol 15(5), 701-708. (Review) Details PubMed Open Access
(2013) Serial passaging of Candida albicans in systemic murine infection suggests that the wild type strain SC5314 is well adapted to the murine kidney. PLOS One 8(5), e64482. Details PubMed Open Access
(2013) A core filamentation response network in Candida albicans is restricted to eight genes. PLOS One 8(3), e58613. Details PubMed Open Access
(2012) Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLOS Pathog 8(6), e1002777. Details PubMed Open Access
(2012) Candida albicans dimorphism as a therapeutic target. Expert Rev Anti Infect Ther 10(1), 85-93. (Review) Details PubMed
(2012) Isolation and amplification of fungal RNA for microarray analysis from host samples. In: Brand AC, MacCallum DM (eds.) Methods in Molecular Biology. Host-fungus interactions. Methods and Protocols. 845, pp. 411-421. Humana Press (Springer). Details PubMed
(2012) An interspecies regulatory network inferred from simultaneous RNA-seq of Candida albicans invading innate immune cells. Front Microbiol 3, 85. Details PubMed
(2011) The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol 187(6), 3072-3086. Details PubMed
(2010) Candida glabrata tryptophan-based pigment production via the Ehrlich pathway. Mol Microbiol 76(1), 25-47. Details PubMed
(2010) Candida glabrata persistence in mice does not depend on host immunosuppression and is unaffected by fungal amino acid auxotrophy. Infect Immun 78(3), 1066-1077. Details PubMed
(2009) Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature 459(7247), 657-662. Details PubMed
(2009) Analysis of differentially expressed genes associated with tryptophan-dependent pigment synthesis in M. furfur by cDNA subtraction technology. Med Mycol 47(3), 248-258. Details PubMed
(2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9(5), 688-700. (Review) Details PubMed
(2008) The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLOS Pathog 4(11), e1000217. Details PubMed Open Access
(2006) MfLIP1, a gene encoding an extracellular lipase of the lipid-dependent fungus Malassezia furfur. Microbiology 152(Pt 2), 547-554. Details PubMed