Nutrient acquisition in infections

In order to survive and replicate within the host, pathogens, such as pathogenic Candida species, need to obtain nutrients during infections. The host, on the other hand, attempts to withhold these nutrients from the pathogen as much as possible (“nutritional immunity”). A molecular tug-of-war starts, where both sides try to sequester essential micronutrients, for example iron or zinc, and get hold of carbon and nitrogen sources. The outcome of any infection is in large parts determined by this struggle, and understanding the mechanisms behind it will help finding novel ways to fight pathogens.

We are interested in the regulation of the fungal response to low micro- and macronutrient levels, which will be encountered by Candida cells in the host. Iron is an essential metal for almost all organisms and iron acquisition within a host is a prerequisite for any type of infection. For this reason, we are investigating the iron uptake systems, and their regulation, in both C. albicans and C. glabrata. Zinc, as a central cofactor in many proteins, is of similar importance, and our research focuses on the zinc acquisition systems Candida species have at their disposal. Finally, as an example of a macronutrient which fungi need to grow, we are investigating the nitrogen sources used by C. albicans during infections.

A fungal zincophore system. Invasive C. albicans hyphae secrete a zinc-binding protein, Pra1, which sequesters this essential metal from host cells before reassociating with the fungus via a cognate receptor, Zrt1.

Staff

Osama Elshafee

Publications

Gómez AC, Lyons T, Mamat U, Yero D, Bravo M, Daura X, Elshafee O, Brunke S, Gahan CGM, O'Driscoll M, Gibert I, O'Sullivan TP (2022) Synthesis and evaluation of novel furanones as biofilm inhibitors in opportunistic human pathogens. Eur J Med Chem 242, 114678.
Pekmezovic M, Kaune AK, Austermeier S, Hitzler SUJ, Mogavero S, Hovhannisyan H, Gabaldón T, Gresnigt MS, Hube B (2021) Human albumin enhances the pathogenic potential of Candida glabrata on vaginal epithelial cells. PLOS Pathog 17(10), e1010037.
Van Ende M, Timmermans B, Vanreppelen G, Siscar-Lewin S, Fischer D, Wijnants S, Romero CL, Yazdani S, Rogiers O, Demuyser L, Van Zeebroeck G, Cen Y, Kuchler K, Brunke S, Van Dijck P (2021) The involvement of the Candida glabrata trehalase enzymes in stress resistance and gut colonization. Virulence 12(1), 329-345.
Ho J, Wickramasinghe DN, Nikou SA, Hube B, Richardson JP, Naglik JR (2020) Candidalysin is a potent trigger of alarmin and antimicrobial peptide release in epithelial cells. Cells 9(3), 699.
Ruben S, Garbe E, Mogavero S, Albrecht-Eckardt D, Hellwig D, Häder A, Krüger T, Gerth K, Jacobsen ID, Elshafee O, Brunke S, Hünniger K, Kniemeyer O, Brakhage AA, Morschhäuser J, Hube B, Vylkova S, Kurzai O, Martin R (2020) Ahr1 and Tup1 contribute to the transcriptional control of virulence-associated genes in Candida albicans. mBio 11(2), e00206-20.
Westman J, Walpole GFW, Kasper L, Xue BY, Elshafee O, Hube B, Grinstein S (2020) Lysosome fusion maintains phagosome integrity during fungal infection. Cell Host Microbe 28(6), 798-812.
Arastehfar A, Boekhout T, Butler G, De Cesare GB, Dolk E, Gabaldón T, Hafez A, Hube B, Hagen F, Hovhannisyan H, Iracane E, Kostrzewa M, Lackner M, Lass-Flörl C, Llorens C, Mixão V, Munro C, Oliveira-Pacheco J, Pekmezovic M, Pérez-Hansen A, Sanchez AR, Sauer FM, Sparbier K, Stavrou AA, Vaneechoutte M, Vatanshenassan M (2019) Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 43(5), 517-547. (Review)
Chu H, Duan Y, Lang S, Jiang L, Wang Y, Llorente C, Liu J, Mogavero S, Bosques-Padilla F, Abraldes JG, Vargas V, Tu XM, Yang L, Hou X, Hube B, Stärkel P, Schnabl B (2019) The Candida albicans exotoxin Candidalysin promotes alcohol-associated liver disease. J Hepatol 72(3), 391-400.
Correia I, Prieto D, Román E, Wilson D, Hube B, Alonso-Monge R, Pla J (2019) Cooperative role of MAPK pathways in the interaction of Candida albicans with the host Epithelium. Microorganisms 8(1), 48.
Fischer D, Gessner G, Fill TP, Barnett R, Tron K, Dornblut K, Kloss F, Stallforth P, Hube B, Heinemann SH, Hertweck C, Scherlach K, Brunke S (2019) Disruption of membrane integrity by the bacteria-derived antifungal jagaricin. Antimicrob Agents Chemother 63(9), e00707-19.