Genome-scale Metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome.

Mirhakkak MH*, Chen X*, Heinekamp T, Sae-Ong T, Xu LL, Ni Y, Kurzai O, Barber AE, Brakhage AA, Boutin S, Schäuble S#, Panagiotou G# (2023) Genome-scale Metabolic modeling of Aspergillus fumigatus strains reveals growth dependencies on the lung microbiome. Nat Commun 14(1), 4369.

*equal contribution #corresponding author

Abstract

Aspergillus fumigatus, an opportunistic human pathogen, frequently infects the lungs of people with cystic fibrosis and is one of the most common causes of infectious-disease death in immunocompromised patients. Here, we construct 252 strain-specific, genome-scale metabolic models of this important fungal pathogen to study and better understand the metabolic component of its pathogenic versatility. The models show that 23.1% of A. fumigatus metabolic reactions are not conserved across strains and are mainly associated with amino acid, nucleotide, and nitrogen metabolism. Profiles of non-conserved reactions and growth-supporting reaction fluxes are sufficient to differentiate strains, for example by environmental or clinical origin. In addition, shotgun metagenomics analysis of sputum from 40 cystic fibrosis patients (15 females, 25 males) before and after diagnosis with an A. fumigatus colonization suggests that the fungus shapes the lung microbiome towards a more beneficial fungal growth environment associated with aromatic amino acid availability and the shikimate pathway. Our findings are starting points for the development of drugs or microbiome intervention strategies targeting fungal metabolic needs for survival and colonization in the non-native environment of the human lung.

Leibniz-HKI-Authors

Amelia Barber
Axel A. Brakhage
Xiuqiang (Stephen) Chen
Thorsten Heinekamp
Oliver Kurzai
Mohammadhassan Mirhakkak Esfahani
Yueqiong (Bernard) Ni
Gianni Panagiotou
Tongta Sae-Ong
Sascha Schäuble
Lin Lin Xu

Awards

*co-first authors, #corresponding authors

Identifier

doi: 10.1038/s41467-023-39982-5

PMID: 37474497